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_____________________________________________________________________________________ 
 

Abstract 
 

Enterococci deposition has been the subject of concern in soil and water environment, regeneration of this microbes 

has been seen as the cause of deterioration of the water quality in Abonnema, since there ground water aquiferous 

zone deposit  heterogeneous setting, it deposit in shallow and deep Phreatic zone, it is also observed to be 

predominantly  influenced by saline and other mineral in the formation, the influences of alluvium deposit in these 

condition could not influences the aquiferous zone  by uniformity of the Phreatic deposited state in the strata. 

Formation characteristics stated above were found insignificant in the migration of enterococci from surface to 

Phreatic zone, most people find the exploitation of groundwater at shallow depth less capital intensive, so they 

always settle for shallow depth in construction of bore holes, theses condition do not produces quality ground water 

for utilization, it always increase water pollution, rendering hundreds of people illness in the study area, application 

of monitoring and evaluating of microbial transport were found easier through mathematical modeling method, the 

study were thoroughly evaluated  to monitor the rate of migration process to Phreatic zone in the study area.  The 

system developed governing equations that were derived to generate the expressed model that will predict the 

behaviour of the microbes in the formation. The models were simulated and it produced theoretical values compared 

with other measured results, both parameters developed a favuorable fit validating the model. Copyright © 

WJPAS, all rights reserved.  
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1. Introduction 
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The effectiveness microbes to be convert ass absorbed soil carbon into microbial biomass have been called the 

microbial growth efficiency (Y), carbon-use efficiency, or substrate-use effectiveness. This physiological features of 

the microbial biomass powerfully pressure overall soil unrefined carbon (SOC) budgets and carbon sequestration in 

ecosystems (3). Since: nutrient ratios in microbial biomass differ over comparatively narrow ranges Y also 

contributes to regulation of nitrogen (and other nutrient) mineralization and immobilization in soils (3). 

Measurements of microbial growth efficiency in soil span a surprisingly wide range, from 0.14 to 0.77 (4, 6, 5). 

Despite the high variability of this integrative trait and its importance in influencing organic matter turnover and 

nutrient availability, we have limited understanding of how environmental variables influence growth efficiency (15, 

3; and 5). The size and structure of the soil microbial population is a role of net primary making, plant carbon (C) 

portion, rhizosphere activity, and litter substrate superiority (11,10,7,and 9), and is controlled through complex 

communications with plants (12,13and 14). Changes in atmospheric CO2 concentration and nitrogen (N) deposition 

rates alter both the quality and quantity of above- and belowground plant litter inputs to soil (2, 8,14,), which in turn 

can affect belowground microbial society arrangement and function (4,15,and17). Considering the mechanisms 

controlling belowground C processes is useful in predicting future changes in soil C stores in response to climate 

and land-use change (17). Altering root and coarse woody debris (CWD) inputs to soil is one method to examine the 

feedbacks between plants, microbes, and soil organic matter (SOM) dynamics (18,19). In a Douglas-fir forest, 7 y of 

CWD additions and litter and root exclusion have produced significant changes in annual soil CO2 efflux (16, 11). 
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Auxiliary equation becomes  
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Applying quadratic expression, we have 
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Assuming this discriminant is complex, therefore equation (23) and (24) can be written as: 

  ZMSinFtMCosFZTC 21 21,    ………………………………….  (25) 

But if But if 
v

d
t  and tvZ   

The expressed model can be written as  

  tVMSinF
v

d
MCosFZTC  21 21,  ………………………………….  (26) 

3. Material and Method   

Column experiments were also performed using soil samples from several borehole locations, the soil samples were 

collected at intervals of three metres each (3m). An  Enterococci   solute was introduced at the top of the column and 

effluents from the lower end of the column were collected and analyzed for Enterococci  and the effluent at the 

down of the column were collected at different days, analysis,. This experiment were performed to compare with the 

theoretical values from the developed model for validation  

4. Results and Discussion  

Results and discussion are presented in tables including graphical representation of E.coli system condition 

 



World Journal of Physical and Analytical Sciences                                                                                               

Vol. 1, No. 1, October 2014, pp. 1 -13                                                                                                                   

Available online at http://wjpas.com/ 

 

5 

 

Table 4.1: Theoretical vales of Enterococci at Different Depth 

Depth [m] Theoretical Values Conc. 

3 1.42E-04 

6 2.85E-04 

9 4.28E-04 

12 5.71E-04 

15 7.14E-04 

18 8.56E-04 

21 9.99E-04 

24 1.14E-03 

27 1.28E-03 

30 1.42E-03 

Table 4.2: Theoretical vales of Enterococci at Different Time 

Time per day Theoretical Values Conc. 

10 1.42E-04 

20 2.85E-04 

30 4.28E-04 

40 5.71E-04 

50 7.14E-04 

60 8.56E-04 

70 9.99E-04 

80 1.14E-03 

90 1.28E-03 

100 1.42E-03 

                      

                 Table: 4.3 Theoretical and Measured values of Enterococci Concentration at Different depth 

Depth [m] 

Theoretical Values 

Conc. Measured Values 

3 1.42E-04 1.52E-04 

6 2.85E-04 3.02E-04 

9 4.28E-04 4.52E-04 

12 5.71E-04 6.02E-04 

15 7.14E-04 7.52E-04 

18 8.56E-04 9.02E-04 

21 9.99E-04 1.05E-03 

24 1.14E-03 1.20E-03 

27 1.28E-03 1.35E-03 

30 1.42E-03 1.50E-03 
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                   Table: 4.4 Theoretical and Measured values of Enterococci Concentration at Different Time 

Time per day Theoretical Values Conc. Measured Values 

10 1.42E-04 1.02E-04 

20 2.85E-04 2.02E-04 

30 4.28E-04 3.02E-04 

40 5.71E-04 4.02E-04 

50 7.14E-04 5.02E-04 

60 8.56E-04 6.02E-04 

70 9.99E-04 7.02E-04 

80 1.14E-03 8.02E-04 

90 1.28E-03 9.02E-04 

100 1.42E-03 1.00E-03 

 

Table 4.5: Theoretical vales of Enterococci at Different Depth 

Depth [m] Theoretical Values Conc. 

3 8.39E-03 

6 0.016 

9 0.025 

12 0.033 

15 0.041 

18 0.05 

21 0.058 

24 0.067 

27 0.076 

30 0.083 

 

Table 4.6: Theoretical vales of Enterococci at Different Depth 

Time per day Theoretical Values Conc. 

10 8.39E-03 

20 0.016 

30 0.025 

40 0.033 

50 0.041 

60 0.05 

70 0.058 

80 0.067 

90 0.076 

100 0.083 
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                   Table: 4.7 Theoretical and Measured values of Enterococci Concentration at Different Time 

Depth [m] 

Theoretical Values 

Conc. Measured Values Conc. 

3 8.39E-03 6.00E-03 

6 0.016 0.012 

9 0.025 0.018 

12 0.033 0.024 

15 0.041 0.03 

18 0.05 0.036 

21 0.058 0.042 

24 0.067 0.048 

27 0.076 0.054 

30 0.083 0.06 

                   

               Table: 4.8 Theoretical and Measured values of Enterococci Concentration at Different Time 

Time per day 

Theoretical Values 

Conc. Measured Values Conc. 

10 8.39E-03 7.80E-03 

20 0.016 1.80E-02 

30 0.025 2.30E-02 

40 0.033 3.10E-02 

50 0.041 3.90E-02 

60 0.05 5.00E-02 

70 0.058 5.70E-02 

80 0.067 6.60E-02 

90 0.076 7.40E-02 

100 0.083 7.90E-02 
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Figure 4.1: Theoretical vales of Enterococci at Different Depth 

 

Figure 4.2: Theoretical vales of Enterococci at Different Time 
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                   Figure: 4.3 Theoretical and Measured values of Enterococci Concentration at Different Time 

 

                   Figure: 4.4 Theoretical and Measured values of Enterococci Concentration at Different Time 
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Figure 4.5: Theoretical vales of Enterococci at Different Depth 

 

Figure 4.6: Theoretical vales of Enterococci at Different Time 
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                   Figure: 4.7 Theoretical and Measured values of Enterococci Concentration at Different Time 

 

                   Figure: 4.8 Theoretical and Measured values of Enterococci Concentration at Different Time 
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influence by predominant deposition of one of the formation characteristics, the formation parameter pressure the 

deposition of the enterococci  migration and concentration  under the influences of porosity discovered to be  the 

predominantly higher  in the study location. The behaviour of enterococci  definitely depend on the deposition of the 

structural setting of the formation, the pressure of  deltaic condition has also expressed it influences on the transport 

and depositional level of the microbes, the migration of enterococci has been express from the developed model 

through the simulation values, the results were compared with other experimental values, both developed a 

favuorable fits validating the developed model, the study in this condition were able to express insignificant effect of 

saline deposition on the migration of the microbes at coastal environments, the study has developed a base line that 

will be applied in monitoring and evaluation of enterococci deposition including its behaviour in costal 

environments.  

4. Conclusion    

Enterococci were found in saline environments, the deposition of this microbes were evaluated to monitor it 

migration process on such predominant saline environments, the application were through mathematical modeling, 

the system of this migration at saline environment were developed generating derived governing equation, the 

derived solution  generated model simulated that determined the behaviour of the microbes in saline coastal 

environments, study were able to express the rate of migration and other influences that pressured the behaviour of 

the microbes in the study area. Such condition were able to influences the concentration process of enterococci in 

coastal environments, there is no doubt that the process were necessary to confirm it rates of concentration because 

of the health implication this pollutant sources has cause to the human settlers in the study area. Experts will ensure 

that this approach will be applied proactively to eradicate ground water pollution in the study environment. 
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